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Abstract

Airplanes are certified as a whole: there is no established basis for separately certifying

some components, particularly software-intensive ones, independently of their specific ap-

plication in a given airplane. The absence of separate certification inhibits the development

of modular components that could be largely "precertified" and used in several different

contexts within a single airplane, or across many different airplanes.

In this report, we examine the issues in modular certification of software components

and propose an approach based on assume-guarantee reasoning. We extend the method

from verification to certification by considering behavior in the presence of failures. This

exposes the need for partitioning, and separation of assumptions and guarantees into normal

and abnormal cases. We then identify three classes of property that must be verified within

this framework: safe function, true guarantees, and controlled failure.

We identify a particular assume-guarantee proof rule (due to McMillan) that is appro-

priate to the applications considered, and formally verify its soundness in PVS.
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Chapter 1

Introduction

Software on board commercial aircraft has traditionally been structured in federated archi-

tectures, meaning that each "function" (such as autopilot, flight management, yaw damp-

ing) has its own computer system (with its own internal redundancy for fault tolerance)

and software, and there is relatively little interaction among the separate systems. The sep-

arate systems of the federated architecture provide natural barriers to the propagation of

faults (because there is little sharing of resources), and the lack of interaction allows the

certification case for each to be developed more or less independently.

However, the federated architecture is expensive (because of the duplication of re-

sources) and limited in the functionality that it can provide (because of the lack of inter-

action among different functions). There is therefore a move toward integrated modular

avionics (IMA) architectures in which several functions share a common (fault tolerant)

computing resource, and operate in a more integrated (i.e., mutually interactive) manner.

A similar transition is occurring in the lower-level "control" functions (such as engine and

auxiliary power unit (APU) control, cabin pressurization), where Honeywell is developing

a modular aerospace controls (MAC) architecture. IMA and MAC architectures not only

allow previously separate functions to be integrated, they allow individual functions to be

"deconstructed" into smaller components that can be reused across different applications

and that can be developed and certified to different criticality levels.

Certification costs are a significant element in aerospace engineering, so full realization

of the benefits of the IMA and MAC approach depends on modularization and reuse of

certification arguments. However, there is currently no provision for separate or modular

certification of components: an airplane is certified as a whole. Of course, the certification

argument concerning similar components and applications is likely to proceed similarly

across different aircraft, so there is informal reuse of argument and evidence, but this is

not the same as a modular argument, with defined interfaces between the arguments for the

components and the whole.

The certification requirements for IMA are currently under review. A Technical Stan-

dard Order (TSO) for hardware elements of IMA is due to be completed shortly [FAA01]



andcommitteesoftheUSandEuropeanstandardsandregulatorybodieshavebeenformed
toproposeguidanceoncertificationissuesforIMA. Inparticular,RTCASC-200(Require-
mentsandTechnicalConceptsforAviationSpecialCommittee200)andthecorresponding
Europeanbody(EUROCAEWG-60)havetermsof referencethatinclude"proposeand
documentamethodfor transferabilityof certificationcreditbetweenstakeholders(e.g.,
aircraftmanufacturer,systemintegrator,multipleapplicationprovides,platformprovider,
operators,regulators)."

In thisreportweexamineissuesinconstructingmodularcertificationarguments.The
examinationisconductedfromacomputerscienceperspectiveandwehopeit mayprove
helpfulto thedeliberationsof thebodiesmentionedabove.Thestructureof thereport
isasfollows.Chapter2 providesaninformalexaminationoftheissuesandproposesan
approachbasedonassume-guarantee reasoning, extended from verification to certification.

Chapter 3 examines the formal basis for this approach and identifies a particular assume-

guarantee proof rule that is appropriate to the applications considered; the soundness of this

rule is established by formal verification in PVS. Summary and conclusions are presented

in Chapter 4. An appendix summarizes issues and practices in airplane certification, and

outlines how these are applied to software certification.



Chapter 2

Informal Examination

The basic idea that we wish to examine is portrayed in Figure 2.1. In this diagram, X repre-

sents some function, and Y the rest of the aircraft. In the traditional method of certification,

shown on the right, certification considers X and Y as an indivisible whole; in modular

certification, shown on the left, the idea is to certify the whole by somehow integrating

(suggested by the symbol +) properties of X considered in isolation with properties of Y

considered in isolation.

+ Y vs.

.... i

Y

Figure 2.1 : Modular vs. Traditional Certification

Many benefits would accrue if such a process were feasible, especially if the function

were reused in several different aircraft, or if there were several suppliers of X-like func-

tions for a single aircraft. In the first case, the supplier of the function could develop the

certification argument for the function just once, and then contribute to the integration ar-

gument for each of its application; in the second case, the aircraft manufacturer has only to

develop the integration argument for the X-like function from each different supplier. Of

course, this assumes that the integration argument is less expensive, but no less safe, than

the integrated argument for "X with Y" employed in the traditional method.

There is hope that modular certification should be feasible: first because there is infor-

mal reuse (i.e., modularization) of arguments concerning a function from one application to



thenext,andsecondbecauseit correspondstothewaysystemsareactuallydeveloped--as
separatecomponentswithinterfacesbetweenthem.Unfortunately,thehopesengendered
bytheseobservationsbecomelessenedoncloserexamination.It is truethatsystemsare
constructedfromcomponentsandthatweareusedto reasoningaboutthepropertiesof
compositesystemsby consideringthepropertiesof thecomponentsandtheinteractions
acrosstheirinterfaces.Theproblemisthatconventionaldesign,andthenotionof anin-
terface,areconcernedwithnormaloperation,whereasmuchoftheconsiderationthatgoes
intocertificationconcernsabnormaloperation,andthemalfunctionof components.More
particularly,it concernsthehazardsthatonecomponentmayposeto thelargersystem,
andthesemaynotrespecttheinterfacesthatdefinetheboundariesbetweencomponentsin
normaloperation.

Togiveaconcreteexample,supposethatY is Concorde, X is Concorde's tires. The

normal interfaces between the tires and other aircraft systems are mechanical (between

the wheels and the runway), and thermodynamic (the heat transfer from hot tires when

the undercarriage is retracted after takeoff). The normal properties considered of the tires

include their strength and durability, their ability to dispell water, and their ability to handle

the weight of the airplane and the length and speed of its takeoff run and so on. These

requirements of the tires flow down naturally from those of the aircraft as a whole, and they

define the properties that must be considered in normal operation.

But when we consider abnormal operation, and failures, we find new ways for the tires

and aircraft to interact that do not respect the normal interfaces: we now know that a dis-

integrating tire can penetrate the wing tanks, and that this poses a hazard to the aircraft.

In a different aircraft application, this hazard might not exist, but the only way to deter-

mine whether it does or not is to examine the tires in the context of their application: in

other words, to perform certification in the traditional manner suggested by the right side of

Figure 2.1.

It seems that the potential hazards between an aircraft and its functions are sufficiently

rich that it is not really feasible to consider them in isolation: hazards are not included in

the conventional notion of interface, and we have to consider the system as a whole for

certification purposes.

This is a compelling argument; it demonstrates that modular certification, construed

in its most general form, is infeasible. To develop an approach that is feasible, we must

focus our aims more narrowly. Now, our main concern is software, so it might be that

we can develop a suitable approach by supposing that the X in Figure 2.1 is the software

for some function that is part of Y (e.g., X is software that controls the thrust reversers).

Unfortunately, it is easy to see that this interpretation is completely unworkable: how can

we possibly certify control software separately from the function that it controls.

It seems that we need to focus our interpretation even more narrowly. The essential

idea of IMA and MAC architectures, which are the motivation for this study, is that they al-

low software for different functions or subfunctions to interact and to share computational

and communications resources: the different functions are (separately) certified with the



aircraft,whatisnewis thatwewantto concludethattheycanbecertifiedto operateto-

gether in an IMA or MAC environment. This suggests we reinterpret our notion of modular

certification along the lines suggested in Figure 2.2.

Y

---i1

ivs. Ix_2_ __: Y

Figure 2.2: Reinterpretation of Modular Certification

The question now is: how can we certify X, for operation in Y without some knowl-

edge of 322 and vice versa? Suppose X1 is the controller for the engine and X_ is that for

the thrust reverser: obviously these interact and we cannot examine all the behaviors and

hazards of one without considering those of the other. But perhaps we could use assump-

tions about X1 when examining X2 and similarly could use assumptions about X, when

considering X2. Of course we would have to show that X1 truly satisfies the assumptions

used by X2, and vice versa. This type of argument is used in computer science, where it

is called Assume-Guarantee reasoning. Figure 2.3 portrays this approach, where A(X1)

and A(X2) represent assumptions about X1 and X2, respectively, and the dotted lines are

intended to indicate that we perform certification of X1, for example, in the context of Y,

and assumptions about X2.

::A(X2)
Y

A(X1) ::
Xl --I

vs. ix_2_ __i Y

Figure 2.3: Assume-Guarantee Modular Certification

As mentioned, assume-guarantee reasoning is known and used in computer science--

but it is used for verification, not certification. Verification is concerned with showing



thatthingsworkcorrectly,whereascertificationisalsoconcernedwithshowingthatthey
cannotgobadlywrong---evenwhenotherthingsare going wrong. This means that the

assumptions about X2 that are used in certifying X1 must include assumptions about the

way X_ behaves when it has failed! This is not such an improbable approach as it may

seem--in fact, it corresponds to the way avionics functions are actually designed. Avionics

functions are designed to be fault tolerant and fail safe; this means, for example, that the

thrust reverser may normally use sensor data supplied by the engine controller, but that it

has some way of checking the integrity and recency of that data and will do something

safe if that data source ceases, or becomes corrupt. In the worst case, we may be able

to establish that one function behaves in a safe way in the absence of any assumptions

about other functions (but it behaves in more desirable ways when some assumptions are

true). There are applications and algorithms that can indeed operate under such worst-

case assumptions (these are called "Byzantine fault-tolerant" algorithms). Notice that "no

assumptions" does not mean "does nothing": rather, it allows any behavior at all, including

that which appears actively malicious. Many avionics functions do require some minimal

assumptions about other functions (for example, the thrust reverser may need to assume

that the engine controller does not lose control of the engine) but we can expect that the

certification of those other functions will need to ensure such minimal assumptions anyway

(an engine should not go out of control, quite independently of whether the thrust reverser

needs this assumption).

This analysis suggests that we can adapt assume-guarantee reasoning to the needs of

certification by breaking the various assumptions and guarantees into normal and (possi-

bly several) abnormal elements. We then establish that X1 delivers its normal guarantee,

assuming that X2 does the same (and vice versa), and similarly for the various abnormal

assumptions and guarantees. It will be desirable to establish that the abnormal assumptions

and guarantees do not have a "domino effect": that is, if X1 suffers a failure that causes

its behavior to revert from guarantee G(X1) to G'(X1), we may expect that X_'s behavior

will revert from G(X2) to G'(X2), but we do not want the lowering of X2's guarantee to

cause a further regression of X1 from G'(X1) to G"(X1) and so on. In general, there will

be more than just two components, and we will need to be sure that failures and consequent

lowering of guarantees do not propagate in an uncontrolled manner. One way to achieve

this is to arrange abnormal assumptions and guarantees on a series of levels, and to show

that assumptions at level i are sufficient to establish the corresponding guarantees at the
same level.

There is an implicit expectation here that we need to make explicit. It is the expectation

that failure of X1, say, can impact X2 only through their respective assumptions and guar-

antees. Now X1 and X2 are software systems, so their assumptions and guarantees concern

the values and relationships of various shared state variables (including those that represent

real-world quantities such as time); not represented in these assumptions and guarantees

are expectations that X1 will respect interfaces even after it has failed, so X_'s private state

variables will not be affected by the failure, nor will its ability to perform its computa-



tions,toaccessitssensors,actuators,andotherprivateresources,andtocommunicatewith
X3, X4 . . . Xn. These expectations are those of partitioning.

We have previously examined partitioning in some detail, and refer readers unfamiliar

with the topic our report [Rus99]. The salient point is that architectural mechanisms exter-

nal to a X1, X2 .... are required to enforce partitioning--for we cannot expect a failed X1

to observe its obligations not to tamper with X2's private variables. There might appear to

be an inconsistency here: if we cannot trust a failed X1 to observe its obligations to X_'s

private variables (for example), how can we expect it to satisfy any of its abnormal guar-

antees? The answer is that X1 may have several subcomponents: one failed subcomponent

might (in the absence of partitioning) damage X2, but other subcomponents will deliver

suitable abnormal guarantees (for example, the software for an engine controller could fail,

but a mechanical backup might then control the engine, or at least shut it down safely).

In fact, partitioning is a prerequisite for this subdivision of a function into subcomponents

that fail independently and therefore are able to provide fault tolerance and/or fail safety.

In traditional federated systems, partitioning is ensured by physical architecture: differ-

ent functions run on physically separate computer systems (e.g., autopilot and autothrottle)

with little communication between them, and the subcomponents of a single function are

likewise physically disjoint (e.g., the separate primary and backup of a fault-tolerant sys-

tem). In an IMA or MAC system, functions and their subcomponents share many resources,

so the physical partitioning of a federated architecture must be replaced by "logical" parti-

tioning that is enforced by the IMA or MAC architecture. Constructing and enforcing this

logical partitioning is the primary responsibility of the "bus" that underlies IMA and MAC

architectures (e.g., SAFEbus, or TTA). Issues in the design and assurance of these safety-

critical buses, and the ways in which they provide partitioning, are described in detail in

another report [Rus01]. The important point is that a safety-critical bus ensures that soft-

ware in a nonfaulty host computer will continue to operate correctly and will receive correct

services (e.g., sensor and other data) from other nonfanlty nodes and correct services (e.g.,

membership and time) from the bus despite faults (software or hardware) in other nodes and

hardware faults in some of the components of the bus itself. The exact types and numbers

of fanlts that can be tolerated depend on the bus and its configuration [Rus01].

We have now identified the elements that together create the possibility of modular

certification for software.

Partitioning: protects the computational and commtmications environment perceived by

nonfaulty components: faulty components cannot affect the computations performed

by nonfaulty components, nor their ability to commtmicate, nor the services they pro-

vide and use. The only way a faulty component can affect nonfaulty ones is by sup-

plying faulty data, or by performing its function incorrectly. Partitioning is achieved

by architectural means: in IMA and MAC architectures it is the responsibility of the

underlying bus architecture, which must be certified to construct and enforce this

property, subject to a specified fault hypothesis.
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Assume-guarantee reasoning: allows properties of one component to be established on

the basis of assumptions about the properties of others. The precise way in which

this is done requires care, as the reasoning is circular and potentially unsound. This

aspect is examined in a formal way in Chapter 3

Separation of properties into normal and abnormal: allows assume-guarantee reason-

ing to be extended from verification to certification. The abnormal cases allow us

to reason about the behavior of a component when components with which it inter-

acts fail in some way.

We say that a component is subject to an external failure when some component with

which it interacts no longer delivers its normal guarantee; it suffers an internal failure

when one of its own subcomponents fails. Its abnormal assumptions record the ex-

ternal fault hypothesis for a component; its internal fault hypothesis is a specification

of the kinds, numbers, and arrival rates of possible internal failures.

Certification of an individual component must establish the following two classes of

properties.

Safe function: under all combinations of faults consistent with its external and in-

ternal fault hypotheses, the component must be shown to perform its function

safely (e.g., if it is an engine controller, it must control the engine safely).

True guarantees: under all combinations of faults consistent with its external and

internal fault hypotheses, the component must be shown to satisfy one or more

of its normal or abnormal guarantees.

Controlled failure: avoids the domino effect. Normal guarantees are at level O, abnormal

guarantees are assigned to levels greater than zero. Internal faults are also allocated

to severity levels in a similar manner. We must show that if a component has inter-

nal faults at severity level i, and if every component with which it interacts delivers

guarantees on level i or better (i.e., numerically lower), then the component delivers

a guarantee of level i or better. Notice that the requirement for true guarantees can be
subsumed within that for controlled failure.

Whereas partitioning is ensured at the architectural level (i.e., outside the software

whose certification is under consideration), safe function, true guarantees, and controlled

failure are properties that must be certified for the software under consideration. Controlled

failure requires that a fault in one component must not lead to a worse fault in another. It

is achieved by suitable redundancy (e.g., if one component fails to deliver a sensor sam-

ple, perhaps it can be synthesized from others using the methods of analytic redundancy)

and self-protection (e.g., timeouts, default values and so on). Many of the design and pro-

gramming techniques that assist in this endeavor are folklore (e.g., the practice of zeroing

a data value after it is read from a buffer, so that the reader can tell whether it has been



refreshedthenexttimeit goestoreadit), butsomearesufficientlygeneralthattheyshould
beconsideredasdesignprinciples.

Oneimportantinsightis thatacomponentshouldnotallowanothertocontrolitsown
progressnor,moregenerally,itsownflowof control.Supposethatoneof theguaran-
teesby onecomponentisquiteweak:for example,"thisbuffermaysometimescontain
recentdataconcerningparameterA." Another component that uses this data must be pre-

pared to operate when recent data about A is unavailable (at least from this component in

this buffer). Now, it might seem that predictability and simplicity would be enhanced if

we were to ensure that the flow of data about A is reliable--perhaps using a protocol in-

volving acknowledgments. But in fact, contrary to this intuition, such a mechanism would

greatly increase the coupling between components and introduce more complicated failure

propagations. For example, if X1 supplies data to X2, the introduction of a protocol for

reliable communication could cause X1 to block waiting for an acknowledgment from X2

that may never come if X2 has failed. Kopetz [Kop99] defines such interfaces that involve

bidirectional flow of control as "composite" and argues convincingly that they should be

eschewed in favor of "elementary" interfaces in which control flow is unidirectional. Data

flow may be bidirectional, but the task of tolerating external failures is greatly simplified by

the unidirectional control flow of elementary interfaces.

The need for elementary interfaces leads to unusual protocols that are largely unknown

outside the avionics field. The four-slot protocol of Simpson [Sim90], for example, provides

a completely nonblocking, asynchronous communication mechanism that nonetheless en-

sures timely transmission and mutual exclusion (i.e., no simultaneous reading and writing

of the same buffer). A generalization of this protocol, called NBW (nonblocking write) is

used in TTA [KR93].

There is a rich opportunity to codify and analyze the principles and requirements that

underlie algorithms such as these. Codification would be undertaken in the context of the

assume-guarantee approach to modular certification outlined above. That approach itself

requires further elaboration in a formal, mathematical context that will enable its soundness

and adequacy to be analyzed. The following chapter presents such a formal analysis for the

central notion: that of assume-guarantee reasoning.

9
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Chapter 3

Formal Examination

The previous chapter introduced assume-guarantee reasoning as the central element in an

approach to modular certification. The key idea in assume-guarantee reasoning, first intro-

duced by Chandy and Misra [MC81] and Jones [Jon83], is that we show that X1 guarantees

certain properties P1 on the assumption that X2 delivers certain properties P2, and vice

versa for X2, and then claim that the composition of X1 and X2 (i.e., both running and

interacting together) guarantees P1 and P2 unconditionally.

We can express this idea symbolically in terms of the following proof rule.

(PI>X2(P2)

(true) XlllX_ (P, A P2)

Here, I denotesthecompositionof and andformulaslike(p)X(q)asserts
that if X is part of a system that satisfies p (i.e., p is true of all behaviors of the composite

system), then the system must also satisfy q (i.e., X assumes p and guarantees q).

Rules such as this are called "compositional" because we reason about X1 and X2

separately (in the hypotheses above the line) and deduce properties about XlllX2 (in the

conclusion below the line) without having to reason about the composed system directly.

The problem with such proof rules is that they are circular (X1 depends on 322 and vice

versa) and potentially unsound.

In fact, the unsoundness is more than potential, it is real: for example, let P1 be "even-

tually z = 1," let P'2 be "eventually y = 1," let X1 be "wait until y = 1, then set z to 1,"

and let 322 be "wait until z = 1, then set y to 1," where both :c and y are initially 0. Then

the hypotheses to the rule are true, but the conclusion is not: X1 and X2 can forever wait

for the other to make the first move.

There are several modified assume-guarantee proof rules that are sound. Different rules

may be compared according to the kinds of system models and specification they support,

the extent to which they lend themselves to mechanized analysis, and the extent to which

they are preserved under refinement (i.e., under what circumstances can X1 be replaced

11



byanimplementationthatmaydomorethanX1). Early work considered many different

system models for the components--for example, (terminating) programs that communi-

cate by shared variables, or by synchronous or asynchronous message passing--while the

properties considered could be those true on termination (e.g., input/output relations), or

characterizations of the conditions under which termination would be achieved. Later work

considers the components as reactive systems (i.e., programs that maintain an ongoing inter-

action with their environment) that interact through shared variables and whose properties

are formalized in terms of their behaviors (i.e., roughly speaking, the sequences of values

assumed by their state variables).

One way to obtain a sound compositional rule is to break the "circular" dependency in

the previous one by introducing an intermediate property I such that

(P1)XI(/)

(pl) XlllX2 (P,2).

The problem with this approach is that "circular" dependency is a real phenomenon and

cannot simply be legislated away. In the Time Triggered Architecture (TTA), for exam-

ple, clock synchronization depends on group membership and group membership depends

on synchronization--so we do need a proof rule that truly accommodates this circular-

ity. Closer examination of the circular dependency in TTA reveals that it is not circular

if the temporal evolution of the system is taken into consideration: clock synchronization

in round t depends on group membership in round t - 1, which in turn depends on clock

synchronization in round t - 2 and so on.

This suggests that we could modify our previous circular rule to read as follows, where

pt indicates that Pj holds up to time t.

(/_,_) Xl (Y_ +1 )

(pt)X_ (R t+l )

(true} XlllX2 (P1 A P_)

Although this seems intuitively plausible, we really want the t and t + 1 on the same side

of each antecedent formula, so that we are able to reason from one time point to the next. A

formulation that has this character has been introduced by McMillan [McM99]; here H is

a "helper" property, [] is the "always" modality of Linear Temporal Logic (LTL), and p _>q

(" p constrains q") means that ifp is always true up to time t, then q holds at time t + 1 (i.e.,

p fails before q).

<H>X1 </q'2 D PI>

<H)X_<P1 E>P2) (3.1)

(H) XlllX2 (D(P1 A P,2))

12



Noticethatp _> q can be written as the LTL formula _ (p U _q), where U is the LTL

"until" operator} This means that the antecedent formulas can be established by LTL model

checking if the transition relations for X1 and X_ are finite.

The proof rule 3.1 has the characteristics we require, but what exactly does it mean, and

is it sound? These question can be resolved only by giving a semantics to the symbols and

formulas used in the rule. McMillan's presentation of the rule only sketches the argument

for its soundness; a more formal treatment is given by Namjoshi and Trefler [NT00], but it

is not easy reading and does not convey the basic intuition.

Accordingly, we present a formalization and verification of McMillan's rule using PVS.

The development is surprisingly short and simple and should be clear to anyone with knowl-

edge of PVS.

We begin with a PVS datatype that defines the basic language of LTL (to be interpreted

over a state type state).

pathformula[state : TYPE]: DATATYPE

BEGIN

Holds(state formula: pred[state]) : Holds?

U(argl: pathformula, arg2: pathformula) : U?

X(arg: pathformula) : X?

-(arg: pathformula) : NOT?

\/(argl: pathformula, arg2: pathformula) : OR?

END pathformula

Here, U and x represent the until and next modalities of LTL, respectively, and - and \ /

represent negation and disjunction, respectively. Ho 1 d s represents application of a state (as

opposed to a path) formula.

The semantics of the language defined by pathformula are given by the function ] =

defined in the theory paths. LTL formulas are interpreted over sequences of states (thus,

an LTL formula specifies a set of such sequences). The definition s ] = p2 (s satisfies P)

recursively decomposes the pathformula P by cases and determines whether it is satisfied

by the sequence s of states.

1The subexpression p U _q holds if q eventually becomes false, and p was true at every preceding point;

this is the exact opposite of what we want, hence the outer negation.

2PVS infix operators such as ] : must appear in prefix form when they are deft ned.

13



paths[state: TYPE]: THEORY

BEGIN

IMPORTING pathformula[state]

s: VAR sequence[state]

P, Q : VAR pathformula

l=(s,P) : RECURSIVE bool =

CASES P OF

Holds(S) : S(s(0)),

U(Q, R) : EXISTS (j :nat) :

(FORALL

X(Q) : rest(s) I= Q,

-(Q) : NOT (s I= Q),

\/(Q, R): (s I= Q) OR (s

ENDCASES

MEASURE P by <<

(suffix(s,j) I: R) AND

(i: below(j)) : suffix(s,i) I: Q)

I= R)

The various cases are straightforward. A state formula S Holds on a sequence s if it

is true of the first state in the sequence (i.e., s ( 0 ) ). U (Q, R) is satisfied if some suffix

of s satisfies R and Q was satisfied at all earlier points. The functions suffix and rest

(which is equivalent to s u f f i x (1) ) are defined in the PVS prelude, x (Q) is satisfied by

s if Q is satisfied by the rest of s.

Given semantics for the basic operators of LTL, we can define the others in terms of

these.

CONVERSION+ K conversion

<>(Q) : pathformula : U(Holds(TRUE), Q) ;

[] (Q) : pathformula = -<>-Q ;

&(P, Q) : pathformula = -(-P \/ -Q) ;

=>(P, Q) : pathformula = -P \/ Q ;

<=>(P, Q) : pathformula = (P => Q) & (Q => P)

l>(P, Q) : pathformula = -(U(P,-Q))

END paths

Here < > and [] are the eventually and always modalities, respectively. A formula Q is

eventually satisfied by s if it is satisfied by some suffix of s. The CONVERSION+ com-

mand is needed to turn on PVS's use of K Conversion (named after the K combinator of

combinatory logic), which is needed in the application of U in the < > construction to "lift"

the constant TRUE to a predicate on states. The constrains modality introduced by McMil-

lan is specified as ] >.

We are less interested in interpreting LTL formulas over arbitrary sequences of states

than over those sequences of states that are generated by some system or program. We
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specifyprogramsastransitionrelationsonstates;astatesequencesisthenapath(ortrace)

of a program (i.e., it represents a possible sequence of the states as the program executes) if

each pair of adjacent states in the sequence is consistent with the transition relation. These

notions are specified in the theory assume_uarangee, which is parameterized by a

s g at e type and a transition relation N over that type.

as sume_guarant ee [state :

BEGIN

IMPORTING paths [state]

i, j : VAR nat

s: VAR sequence [state]

TYPE, N: pred[[state,

path?(s) : MACRO bool = FORALL i: N(s(i), s(i + i))

path: TYPE = (path?)

p: VAR path

JUDGEMENT suffix(p, i) HAS TYPE path

state]]]: THEORY

A key property, expressed as a PVS judgement (i.e., a lemma that can be applied by the

typechecker) is that every suffix to a path of N is also a path of N.

Next, we specify what it means for a pathformula p to be valid for N (this notion is

not used in this development, but it is important in others). 3 We then state a useful lemma

and_lem. It is proved by (GRIND).

H, P, Q: VAR pathformula

valid(P): bool : FORALL p: p I: P

and_lem: LEMMA (p I= (P & Q)) = ((P I= P) AND (p I= Q))

Next, we define the function ag ( P, Q ) that gives a precise meaning to the informal

notation < p > N < Q > used earlier (again, the N is implicit as it is a theory parameter).

[ ag(P, Q) : bool = FORALL p: (p I= P) IMPLIES (p I= Q) ]

Two key lemmas are then stated and proved.

agr_box_lem: LEMMA ag(H, []Q) =

FORALL p, i: (P I: H) IMPLIES (suffix(p,i) I: Q)

constrains_lem: LEMMA ag(H, P I> Q) =

FORALL p, i: (P I= H)

AND (FORALL (j: below(i)) : suffix(p, j)

IMPLIES (suffix(p, i) I= Q)

END assume_guarantee

I= P)

3Note that N is implicit as it is a parameter to the theory; this is necessary for the JUDGEMENT, which would

otherwise need to contain N as a free variable (which is not allowed in the current version of PVS).
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Thefirstlemmaallowsthealways ( [ ] ) modality to be removed from the conclusion of an

assume-guarantee assertion, while the second lemma allows elimination of the constrains

([ >) modality. Both of these are proved by (GRIND : IF-MATCH ALL).

Finally, we can specify composition and McMillan's rule for compositional assume-

guarantee reasoning.

composition[state: TYPE] : THEORY

BEGIN

N, NI, N2: VAR PRED[[state, state]]

//(NI, N2)(s, t: state) : bool : Nl(s, t) AND N2(s, t)

IMPORTING assume-guarantee

i, j: VAR nat

H, P, Q: VAR pathformula[state]

kens thm: THEOREM

ag[state, NI] (H, P I> Q) AND ag[state, N2] (H, Q

IMPLIES

ag[state, ml//m2] (H, [] (P & Q))

END composition

I> P)

Here, // is an infix operator that represents composition of programs, defined as the

conjunction of their transition relations. Then, kens _hm is a direct transliteration into

PVS of the proof rule 3.1 on page 12. The PVS proof of this theorem is surprisingly short:

it basically uses the lemmas to expose and index into the paths, and then performs a strong
induction on that index.

(SKOSIMP)

(AUTO-REWRITE

(APPLY (REPEAT

(THEN (REWRITE "agr_box_lem") (REWRITE

(INDUCT "i" :NAME "NAT induction")

(SKOSIMP* :PREDS? T)

(GROUND)

(("i" (APPLY (THEN (INST -6 "p!l .... j!l")

("2" (APPLY (THEN (INST -5 "p!l .... j!l")

"and lem[state, (NI!I // N2!I)]")

"constrains lem"))))

(LAZY-GRIND))))

(LAZY-GRIND)))))

Our first attempt to formalize this approach to assume-guarantee reasoning was long,

and the proofs were also long--and difficult. Other groups have apparently invested months

of work in a similar endeavor without success. That the final treatment in PVS is so straight-

forward is testament to the expressiveness of the PVS language (e.g., its ability to define

LTL in a few dozen lines) and the power and integration of its prover (e.g., the predicate
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subtypepath and its associated JUDGEMENT, which automatically discharges numerous

side conditions during the proof).
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Chapter 4

Conclusions

We have examined several ways in which the notion of modular certification could be inter-

preted and have identified one that is applicable to software components in IMA and MAC

architectures. This interpretation is based on the idea that these components can be certi-

fied to perform their function in the given aircraft context using only assumptions about the

behavior of other software components.

We identified three key elements in this approach.

• Partitioning

• Assume-guarantee reasoning

• Separation of properties into normal and abnormal

Partitioning creates an environment that enforces the interfaces between components;

thus, the only failure modes that need be considered are those in which software compo-

nents perform their function incorrectly, or deliver incorrect behavior at their interfaces.

Partitioning is the responsibility of the safety-critical buses such as SAFEbus and TTA that
underlie IMA and MAC architectures.

Assume-guarantee reasoning is the technique that allows one component to be verified

in the presence of assumptions about another, and vice versa. This approach employs a kind

of circular reasoning and can be unsound. In Chapter 3, we examined formal interpreta-

tions of this technique and identified one, due to McMillan, that seems suitable. We then

formalized this approach in PVS and verified its soundness.

To extend assume-guarantee reasoning from verification to certification, we showed

that it is necessary to consider abnormal as well as normal assumptions and guarantees.

The abnormal properties capture behavior in the presence of failures. To ensure that the

assumptions are closed, and the system is safe, we identified three classes of property that

must be established using assume-guarantee reasoning.

• Safe function
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• Trueguarantees

• Controlledfailure

Thefirstoftheseensuresthateachcomponentperformsitsfunctionsafelyunderallcondi-
tionsconsistentwithitsfaulthypothesis,whilethesecondensuresthatit deliversitsappro-
priateguarantees.Controlledfailureisusedtopreventa"dominoeffect"wherefailureof
onecomponentcausesotherstofailalso.

Forthisapproachto bepractical,componentscannothavestrongorcomplexmutual
interdependencies.WerelatedthisissuetoKopetz'snotionof "composite"and"elemen-
tary"interfaces.Inhisclassicbook,Perrow[Per84]identifiedtwopropertiesthatproduce
systemsthataresusceptibleto catastrophicfailures:strong coupling and interactive com-

plexity. It may be feasible to give a precise characterization of these notions using the

approach introduced here (one might correspond to difficulty in establishing the property

of controlled failure, and the other to excessively numerous and complex assumptions).

Interesting future extensions to this work would be to expand the formal treatment from

the single assumption-guarantee for each component that is adequate for verification to

the multiple (normal/abnormal) assumptions required for certification. This could allow

formalization and analysis of the adequacy of the properties safe function, true guarantees,
and controlled failure.

Although we have proved our assume-guarantee method to be sound, it is known to

be incomplete (i.e., there are correct systems that cannot be verified using the rule 3.1).

Namjoshi and Trefler [NT00] present an extended rule that is both sound and complete, and

it would be interesting to extend our PVS verification to this rule.

Another extension would expand the formal treatment from the two-process to the n-

process case (this is a technical challenge in formal verification, rather than an activity that

would yield additional insight).

It will also be useful to investigate practical application of the approach presented here.

One possible application is to the mutual interdependence of membership and synchroniza-

tion in TTA: each of these is verified on the basis of assumptions about the other. Other

potential applications may be found among those intended for the Honeywell MAC archi-

tecture.

Finally, we hope that some of this material may prove useful to the deliberations of

RTCA SC-200/EUROCAE WG-60, which is considering certification issues for IMA.
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Appendix A

Airplane Certification

Requirements and considerations for certification of software in airborne systems are de-

scribed in FAA Advisory Circular 25.1309-1A [FAA88] and in DO-178B [RTC92], which

is incorporated by reference into the former document (see [FAA93]). In Europe, certifi-

cation is performed by the Joint Airworthiness Authority (JAA) that was set up in 1988 by

the individual authorities of France, Germany, The Netherlands, and the United Kingdom.

The requirements and documents of the JAA parallel those of the FAA. In particular, JAA

"Advisory Material-Joint" document AMJ 25.1309 is equivalent to the FAA Advisory Cir-

cular 25.1309A cited above, and European document EUROCAE ED-12B is the same as
DO-178B.

The general approach to development and certification of safety-critical systems is

grounded in hazard analysis; a hazard is a condition that can lead to an accident. Dam-

age is a measure of the loss in an accident. The severity of a hazard is an assessment of the

worst possible damage that could result, while the danger is the probability of the hazard

leading to an accident. Risk is the combination of hazard severity and danger. The goal

in safety engineering is to control hazards. During requirements and design reviews, po-

tential hazards are identified and analyzed for risk. Unacceptable risks are eliminated or

reduced by respecification of requirements, redesign, incorporation of safety features, or

incorporation of warning devices.

For example, if the concern is destruction by fire, the primary hazards are availability

of combustible material, an ignition source, and a supply of oxygen. If at all possible, the

preferred treatments are to eliminate or reduce these hazards by, for example, substitution

of nonflammable materials, elimination of spark-generating electrical machinery, and re-

duction in oxygen content (cf. substitution of air for pure oxygen during ground operations

for Project Apollo after the Apollo 1 fire). If hazard elimination is impossible or judged

only partially effective, then addition of a fire suppression system and of warning devices

may be considered. The effectiveness and reliability of these systems then becomes a safety

issue, and new hazards may need to be considered (e.g., inadvertent activation of the fire

suppression system).
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Thecriticalityof aparticularcomponentorsystemisameasureof theseverityof the
possibleeffectsthatcouldfollowfromfailureofthatcomponentorsystem.Failureincludes
thepossibilityof performingfunctionsincorrectly,orperformingunintendedfunctions,as
wellasthelossof intendedfunctions.Designalternativesareexploredinordertoreduce
thenumberofcriticalcomponentsandsystems,andtheirdegreeof criticality.Thedegree
of criticalityassociatedwitha particularcomponentorsystemdeterminesthedegreeof
assurancethatshouldbeprovidedfor it: asystemwhosefailurecouldhavegraveconse-
quenceswill beconsideredhighlycriticalandwill requireverystrongassurancesthatits
failurewill beextremelyimprobable.

Forairplanecertification,failuresarecategorizedonafive-pointscalefrom"catas-
trophic"through"hazardous/severe-major,""major,"and"minor"to"noeffect"[FAA88].
Catastrophicfailureconditionsare"thosewhichwouldpreventcontinuedsafeflightand
landing"[FAA88,paragraph6.h(3)]andincludelossof function,malfunction,andunin-
tendedfunction.Failureconditionseveritiesandprobabilitiesmusthaveaninverserelation-
ship;inparticular,catastrophicfailureconditionsmustbe"extremelyimprobable"[FAA88,
paragraph7.d].Thatis,theymustbe"sounlikelythattheyarenotanticipatedto occur
duringtheentireoperationallifeof allairplanesof onetype"[FAA88,paragraph9.e(3)].
"Whenusingquantitativeanalyses..,numericalprobabilities..,ontheorderof 10-9 per
flight-hour1maybeused..,asaidstoengineeringjudgment..,to...helpdeterminecompli-
ance"withtherequirementforextremelyimprobablefailureconditions[FAA88,paragraph
10.b].Anexplanationforthisfigurecanbederived[LT82,page37]byconsideringafleet
of 100aircraft,eachflying3,000hoursperyearovera lifetimeof 33years(therebyac-
cumulatingabout107flight-hours).If hazardanalysisrevealstenpotentiallycatastrophic
failureconditionsineachoftensystems,thenthe"budget"foreachisabout10-9if sucha
conditionisnotexpectedtooccurin thelifetimeofthefleet.Analternativejustificationis
obtainedbyprojectingthehistoricaltrendofreliabilityachievedinmodernjets.From1960
to 1980,thefatalaccidentrateforlargejetsimprovedfrom2to0.5per106hours,andwas
projectedtobebelow0.3per106hoursby1990[LT82,page28].Thissuggeststhatless
thanonefatalaccidentper107hoursisafeasiblegoal,andthesamecalculationasabove
thenleadsto10-9 astherequirementforindividualcatastrophicfailureconditions.

Notethattheprobability10-9 is appliedto (sub)systemfailure,notto anysoftware
thesystemmaycontain.Numericalestimatesof reliabilityarenotassignedto software
insafety-criticalsystems[RTC92,Subsection2.2.3],primarilybecausesoftwarefailureis
notrandombutsystematic(i.e.,duetofaultsof specification,design,orconstruction),and
becausetheratesrequiredaretoosmalltobemeasured.Thesepointsareelaboratedin the
followingparagraphs.

Failurescanberandom or systematic; the former are due to latent manufacturing de-

fects, wear-out and other effects of aging, environmental stress (e.g., single-event upsets

1'Based on a fight of mean duration for the airplane type. However, for a function which is used only
during a specific fight operation; e.g., takeoff, landing etc., the acceptable probability should be based on, and
expressed in terms of, the fight operation's actual duration" [FAA88, paragraph 10.b].
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causedby cosmicrays),andotherdegradationmechanismsthatafflicthardwarecompo-
nents,whilethelatter(whicharesometimescalledgeneric faults) are due to faults in the

specification, design, or construction of the system. The probability of random failure in

a system can be measured by sufficiently extensive and realistic testing, or (for suitably

simple systems) it can be calculated from historical reliability data for its component de-

vices and other known factors, such as environmental conditions. Classical fanlt-tolerance

mechanisms (e.g., _-modular redundancy, standby spares, backup systems) can be used to

reduce the probability of system failure due to random component failures to acceptable

levels, though at some cost in system complexity--which is itself a potential source of

(systematic) design faults.

Systematic failures are not random: faults in specification, design, or construction will

cause the system to fail under specific combinations of system state and input values, and

the failure is certain whenever those combinations arise. But although systematic failures

occur in specific circumstances, occurrences of those circumstances are associated with a

random process, namely, the sequence over time of inputs to the system. 2 Thus, the man-

ifestations of systematic failures behave as stochastic processes and can be treated proba-

bilistically: to talk about a piece of software having a failure rate of less than, say, 10-9 per

hour, is to say that the probability of encountering a sequence of inputs that will cause it to

exhibit a systematic failure is less than 10 .9 per hour. Note that this probabilistic measure

applies whether we are talking about system reliability or system safety; what changes is

the definition of failure. For reliability, a failure is a departure from required or expected

behavior, whereas for safety, failure is any behavior that constitutes a hazard to the contin-

ued safe operation of the airplane. This, apparently small, difference between the notions

of reliability and safety nonetheless has a profound impact on techniques for achieving and

assuring those properties.

First, although there may be many behaviors that constitute failure from the reliability

point of view, there may be relatively few that constitute safety failures--especially of the

higher severity classes. Thus, whereas reliability engineering seeks to improve the quality

of the system in general, safety engineering may prefer to concentrate on the few specific

failures that constitute major hazards; at the risk of reducing these complex issues almost

to caricature, we could say that reliability tries to maximize the extent to which the system

works well, while safety engineering tries to minimize the extent to which it can fail badly.

Second, techniques for improving reliability naturally deal first with the major sources

of unreliability: that is, the most frequently encountered bugs get fixed first. There is a

huge variation in the rate at which different faults lead to failure, and also in the severity of

their consequences. Currit, Dyer, and Mills [CDM86] report data from major IBM systems

showing that one third of the faults identified had a mean time to failure (MTTF) of over

5,000 years (and thus have an insignificant effect on overall MTTF), and a mere 2% of the

faults accounted for 1,000 times more failures than the 60% of faults encountered least of-

2Its environment_he states of the other systems with which it interacts_s considered among the inputs
to a system.
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ten.Reliability-basedapproacheswouldconcentrateondetectingandremovingthefaults
thatcontributemostto unreliability(indeed,theciteddataareusedbyCurrit,Dyer,and
Millstodemonstratethatrandomtestingwouldbe30timesmoreeffectivethanstructural
testinginimprovingthereliabilityofthesystemsconcerned).Themostrarelyencountered
faultscanthereforehideforalongwhileunderatestingandrepairregimeaimedatimprov-
ingreliability--butif justoneortworarefaultscouldleadtocatastrophicfailureconditions,
wecouldhaveareliablebutunsafesystem.3DatacitedbyHecht[Hec93]indicatethatsuch
rarefaultsmaybethedominantcauseofsafety-andmission-criticalfailures.

Third,thereliability-engineeringapproachcanleadto concentrationonthereliability
of individualcomponentsandfunctions,whereassomeof themostserioussafetyfailures
havebeentracedtopoorlyunderstoodtop-levelrequirementsandtounanticipatedsubsys-
teminteractions,oftenin thepresenceofmultiplefailures(Leveson[Lev86]quotessome
examplesand,althoughit doesnotconcernsoftware,Perrow'sclassicstudy[Per84]isstill
worthexamination).

Elementsof boththereliabilityandsafetyengineeringapproachesarelikelyto be
neededinmostairbornesystems:althoughareliablesystemcanbeunsafe,anunreliable
systemisunlikelytobesafeintheseapplications.(Thisistrueprimarilybecausethereare
fewsafefailuremodesin flight-orengine-controlapplications.Thiscanbecontrastedwith
nuclearpowergeneration,whereaprotectionsystemthatshutsthereactordownunneces-
sarilymaybeunreliable, but perfectly safe.)

Just as the subtly different characteristics of reliability and safety lead to differences in

methods used to achieve those properties, so they also lead to differences in their methods

of assurance. Both reliability and safety are measured in probabilistic terms and can, in

principle, be assessed by similar means. However, the numerical requirements for safety in

airborne systems are orders of magnitude more stringent than those normally encountered

for reliability. Systems designated "highly reliable" may be required to achieve failure rates

in the range 10 -3 to 10 -6 per hour, whereas requirements for safety often stipulate failure

rates in the range 10 -7 to 10 -12 per hour. 4 Failure rates of 10 -7 to 10 -12 per hour are

generally considered to define the requirements for "ultra-dependable" systems. Bear in

mind that these probabilities generally refer only to the incidence of safety-critical failures,

and not to the general reliability of the systems concerned, and are assessed on complete

systems--not just the software they contain.

The change in acceptable failure rates between highly reliable and ultra-dependable sys-

tems has such a profound impact that it goes beyond a difference of degree and becomes a

3With 500 deployed systems, a single serious fault with an MTTF of 5,000 years could provoke several
catastrophic failure conditions over the lifetime of the feet.

4Nuclear protection systems require a probability of failure on demand of less than 10 4 [LS93]; fail-
ures that could contribute to a major failure condition in an aircraft require a failure rate less than 10 s per
hour [FAA88, paragraph 10.b(2)]; the (now abandoned) Advanced Automation System for Air Traffic Control
had a requirement for less than 3 seconds unavailability per year (about 10 7) [CDD90]; failures that could
contribute to a catastrophic failure condition in an aircraft require a failure rate less than 10 9 per hour [FAA88,
paragraph 10.b(3)]; controllers for urban trains must have failure rates lower than 10 12 [LS93].
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differenceinkind,thereasonbeingthatit isgenerallyimpossibletoexperimentallyvalidate
failureratesaslowasthosestipulatedforultra-dependability.

Therearetwowaystoestimatethefailurerateof asystem:theexperimentalapproach
seekstomeasureit directlyinatestenvironment;theotherapproachtriesto calculateit
fromtheknownormeasuredfailureratesof itscomponents,plusknowledgeofitsdesign
orstructure(Markovmodelsareoftenusedforthispurpose).

Theexperimentalapproachfacestwodifficulties:firstisthequestionofhowaccurately
thetestenvironmentreproducesthecircumstancesthatwill beencounteredinoperation;
secondis thelargenumberoftestsrequired.If wearelookingforveryrarefailures,it will
benecessarytosubjectthesystemto"all up"testsinahighlyrealistictestenvironment--
installedin therealairplane,orveryclosefacsimile(e.g.,an"ironbird"),withthesame
sensorsandactuatorsaswill beusedin flight.Furthermore,it will clearlybenecessaryto
subjectthesystemtoverylargenumbersoftests(justhowlargeanumberwillbeexplored
shortly)--andif wearedealingwithacontrolsystem,thenatestinputisnotasingleevent,
butawholetrajectoryof inputsthatdrivesthesystemthroughmanystates.5 And since

we are dealing with a component of a larger system, it will be necessary to conduct tests

under conditions of single and multiple failures of components that interact with the system

under test. Obviously, it will be very expensive to set up and run such a test environment,

and very time-consuming to generate the large and complex sets of test inputs and fault

injections required.

So how many tests will be required? Using both classical and Bayesian probabilistic

approaches, it can be shown that if we want a median time to failure of n hours, then we

need to see approximately n hours of failure-free operation under test [LS93]. 6 So if we are

concerned with catastrophic failure conditions, we will need to see 109 failure-free hours

of operation under test. And 109 hours is a little over 114,000 years! 7

To reduce the time under test, we could run several systems in parallel, and we could

try "accelerated testing," in which the inputs to the system are fed in faster than real time

and, if necessary, the system is run on faster hardware than that which will be used in

actual operation. (This naturally raises questions on the realism of the test environment--

particularly when one considers the delicacy of timing issues in control systems. 8) But at

5The key issue here is the extent to which the system accumulates state; systems that reinitialize themselves
periodically can be tested using shorter trajectories than those that must run for long periods. For example, the
clock-drift error that led to failure of Patriot missiles [GAO92] required many hours of continuous operation to
manifest itself in a way that was externally detectable.

6The Bayesian analysis shows that if we bring no prior belief to the problem, then following n hours of
failure-free operation, there is a 50:50 chance that a further n hours will elapse before the first failure.

7Butler and Finelli [BF93] present a similar analysis and conclusion (see also Hamlet [Ham92]). Parnas, van
Schouwen, and Kwan [PvSK90] use a slightly different model. They are concerned with estimating trustworthi-
ness_he probability that software contains no potentially catastrophic fhws but again the broad conclusion
is the same.

Sits feasibility is also questionable given the fault injections that are needed to test the fault-tolerance mech-
anisms of safety-critical systems: experiments must allow a reasonable time to elapse after each injected fault
to see if it leads to failure, and this limits the amount of speedup that is possible.
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bestthesewill reducethetimerequiredbyonlyoneor twoordersof magnitude,andeven
themostwildly optimisticassumptionscannotbringthetimeneededontestwithinthe
realmof feasibility.Similarly,quibblesconcerningtheprobabilitymodelsusedtoderive
thenumberscannoteliminatethegapofseveralordersofmagnitudebetweentheamountof
testingrequiredto determineultra-dependablefailureratesexperimentally,andthatwhich
is feasible.

Theanalysesconsideredsofarassumethatnofailuresareencounteredduringvalidation
tests;anyfailureswill setbackthevalidationprocessandlowerourestimateofthefailure
rateachieved."Reliabilitygrowthmodels"arestatisticalmodelsthatavoidtheneedto
restartthereliabilityestimationprocesseachtimeanerrorisdetectedandrepaired;theyal-
lowoperationalreliabilitytobepredictedfromobservationsduringsystemtest,asbugsare
beingdetectedandrepaired[MIO87].Butalthoughtheyareeffectiveincommercialsoft-
waredevelopment,whereonlymodestlevelsofreliabilityarerequired,reliabilitygrowth
modelsarequiteimpracticalforrequirementsin theultra-dependableregion.Apartfrom
concernsabouttheaccuracyofthemodelemployed,9alawof diminishingreturnsgreatly
lessensthebenefitof reliabilitygrowthmodelingwhenveryhighlevelsof reliabilityare
required[LS93].

Sinceempiricalquantificationof softwarefailureratesis infeasiblein theultra-
dependableregion,wemightconsiderthealternativeapproachof calculatingtheoverall
failureratefromthoseof smallercomponents.Tobefeasible,thisapproachmustrequire
relativelymodestreliabilitiesofthecomponents(otherwisewecannotmeasurethem);the
componentsmustfail independently,orverynearlyso(otherwisewedonotachievethe
multiplicativeeffectrequiredtodeliverultra-dependabilityfromcomponentsof lesserde-
pendability),andtheinterrelationshipsamongthecomponentsmustbesimple(otherwise
wecannotusereliabilityof thecomponentstocalculatethatof thewhole).Ordinarysoft-
warestructuresdonothavethislastproperty:thecomponentscommunicatefreelyand
sharestate,soonefailurecancorrupttheoperationof othercomponents[PvSK90].How-
ever,specializedfanlt-tolerantsystemstructureshavebeenproposedthatseektoavoidthese
difficulties.

Onesuchapproachis"multiple-versiondissimilarsoftware"[RTC92,Subsection2.3.2]
generallyorganizedin theformof N-Version software [AL86, AviS5] or as "Recovery

Blocks" [Ran75]. The idea here is to use two or more independently developed software

versions in conjunction with comparison or voting to avoid system failures due to systematic

failures in individual software versions. For the N-Version technique to be effective, fail-

ures of the separate software versions must be almost independent of each other. 10 The dif-

9Different reliability growth models often make very different predictions, and no single model is uniformly
superior to the others; however, it is possible to determine which models are effective in a particular case, but
only at modest reliability levels [BL92].

1°For the Recovery Block technique to be effective, failure of the 'Acceptance Test" must be almost inde-
pendent of failures of the implementations comprising the body of the recovery block. The test and the body
are intrinsically 'tnore dissimilar" than N-Version components, which must all accomplish the same goal, but
it is diffi cult to develop acceptance tests of the stringency required.
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ficultyis thatsinceindependencecannotbeassumed(experimentsindicatethatcoincident
failuresof differentversionsarenotnegligible[ECK+91,KL86],andtheoreticalstudies
suggestthatindependentfaultscanproducecorrelatedfailures[EL85]--thoughthecorre-
lationcanbenegative[LM89]),theprobabilityof coincidentfailuresmustbemeasured.
Butforthisdesignapproachtobeeffective,theincidenceofcoincidentfailuresmustbein
theultra-dependableregion--andweareagainfacedwiththeinfeasibilityofexperimental
quantificationofextremelyrareevents[BF93].Forthesereasons,thedegreeofprotection
providedbysoftwarediversity"is notusuallymeasurable"anddissimilarsoftwarever-
sionsdonotprovideameansfor achievingsafety-criticalrequirements,but"areusually
usedasameansof providingadditionalprotectionafterthesoftwareverificationprocess
objectivesforthesoftwarelevel..,havebeenmet"[RTC92,Subsection2.3.2].A further
limitationontheutilityof N-Version software is that the most serious faults are generally

observed in complex functions such as redundancy management and distributed coordina-

tion. These employ fault-tolerant algorithms that work under specific fault-hypotheses. For

example, fault-tolerant sensor-distribution algorithms are based on very carefully chosen

voting techniques, and plausible alternatives can fail [LR93]. Supplying N implementa-

tions and additional voting does not necessarily make these functions more robust, but it

certainly changes them and may violate the constraints and fault-hypotheses under which

they work correctly. The daunting truth is that some of the core algorithms and architec-

tural mechanisms in fault-tolerant systems are single points of failure: they just have to

work correctly.

Another design technique suggested by the desire to achieve ultra-dependability through

a combination of less-dependable components is use ofunsynchronized channels with inde-

pendent input sampling. Redundant computer channels (typically triplex or quadruplex) are

required for fault tolerance with respect to random hardware failures in digital flight-control

systems. The channels can operate either asynchronously or synchronously. One advantage

claimed for the asynchronous approach is that the separate channels will sample sensors at

slightly different times and thereby obtain slightly different values [McG90]. Thus, even

if one channel suffers a systematic failure, the others, operating on slightly different input

values, may not. Like design diversity, effectiveness of this "data diversity" depends on

failures exhibiting truly random behavior: in this case the requirement is that activations of

faults should not cluster together in the input space. As with independence in design di-

versity, experimental evidence suggests that this property cannot simply be assumed (there

is some evidence for "error crystals" [DF90]) and it must therefore be measured. And as

before, experimental determination of this property is infeasible at the low fault densities

required. 11

11LikeN-Version software, asynchronous operation could also be proposed as a way to provide additional
protection beyond that required and achieved by an individual software channel. This proposal overlooks the
possibility that an asynchronous approach will complicate the overall design, having ramifi cations throughout
the system, from fault detection, through reconfi guration, to the control laws. As the AFTI-F16 fight tests
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If wecannotvalidateultra-dependablesoftwarebyexperimentalquantificationof its
failurerate,andwecannotmakesubstantiatedpredictionsaboutN-Version or other com-

binations of less-dependable software components, there seems no alternative but to base

certification at least partly on other factors, such as analysis of the design and construction

of the software, examination of the life-cycle processes used in its development, operational

experience gained with similar systems, and perhaps the qualifications of its developers.

We might hope that if these "immanent" (i.e., mental) factors gave us a reasonable

prior expectation of high dependability, then a comparatively modest run of failure-free

tests would be sufficient to confirm ultra-dependability. Unfortunately, a Bayesian analysis

shows that feasible time on test cannot confirm ultra-dependability, unless our prior belief

is already one of ultra-dependability [LS93] (see also [MMN+92] for a detailed analysis of

the probability of failure when testing reveals no failures). In other words, the requirement

of ultra-dependability is so many orders of magnitude removed from the failure rates that

can be experimentally determined in feasible time on test, that essentially all our assurance

of ultra-dependability has to come from immanent factors such as examination of the life-

cycle processes of its development, and review and analysis of the software itself.

We can distinguish two classes of immanent factors: process factors consider the meth-

ods used in the construction of the software, its documentation, the qualifications of the per-

sonnel, and so on, while product factors consider properties of the software system itself,

such as the results of tests, and formal arguments that the software satisfies its requirements.

In current practice, most of the assurance for ultra-dependability derives from process

factors. This is a rather chastening conclusion: assurance of ultra-dependability has to come

from scrutiny of the software and scrupulous attention to the processes of its creation; since

we cannot measure "how well we've done" we instead look at "how hard we tried." This,

in essence, is the burden of DO-178B (and most other guidelines and standards for safety-

critical software, e.g., [IEC86, MOD91a]). Of course, extensive testing is still required, but

these tests are evaluated against criteria that measure how much of the system has been

tested rather than whether they guarantee the presence or absence of certain properties.

Thus, testing is perhaps best seen as serving to validate the assumptions that underpin the

software design, and to corroborate the broad argument for its correctness, rather than as a

validation of reliability claims.

Indeed, most standards for safety-critical software state explicitly that probabilities are

not assigned or assessed for software that is certified by examination of its development

processes:

"... it is not feasible to assess the number or kinds of software errors, if any,

that may remain after the completion of system design, development, and

test" [FAA88, paragraph 7.i].

revealed [Mac88], this additional, unmastered complexity has become the primary source of failure in at least
one system.
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"Developmentof softwaretoa softwareleveldoesnotimplytheassignment
ofafailurerateforthatsoftware.Thus,softwarelevelsorsoftwarereliability
ratesbasedonsoftwarelevelscannotbeusedbythesystemsafetyassessment
processascanhardwarefailurerates"[RTC92,Subsection2.2.3].

(Seealso[MOD91b,paragraph6.6andAnnexF].)
Theinfeasibilityof experimentalquantificationof ultra-dependablesoftwarenotonly

impactstheprocessofvalidatingsoftware,it alsoplacesconstraintsonthedesignofredun-
dancymanagementmechanismsfortoleratinghardwarefailures.Althoughtheassumption
of independentfailurescannotbeassumedfor differentsoftwareversions,it is a reason-

able assumption for properly configured redundant hardware channels. Overall reliability

of such a redundant system then depends on the failure rates of its components, and on

properties of the architecture and implementation of the fault-tolerance mechanisms that

tie it together (in particular, the coverage of its fanlt-detection mechanisms). The overall

system reliability can be calculated using reliability models whose structure and transition

probabilities are determined by hardware component reliabilities and by properties of the

fanlt-tolerance mechanisms. These transition probabilities must either be calculated in some

justifiable manner, or they must be measured: if they cannot be calculated or measured in

feasible time on test, the architecture cannot be validated and its design must be revised.

This analysis motivates the methodology for fault-tolerant architectures known as "de-

sign for validation" [JB92], which is based on the following principles.

. The system must be designed so that a complete and accurate reliability model can

be constructed. All parameters of the model that cannot be deduced analytically must

be measurable in feasible time under test.

. The reliability model does not include transitions representing design faults; analyt-

ical arguments must be presented to show that design faults will not cause system

failure.

3. Design tradeoffs are made in favor of designs that minimize the number of parameters

that must be measured, and that simplify the analytic argmnents.

Johnson and Butler [JB92] present a couple of representative examples to show how

these principles might apply in practice.

Consider, for example, a dual-channel system (sometimes called a self-checking pair).

Architectures of this type are widely used in full authority digital engine controls (FADECs)

and autopilots. The idea is that each channel periodically checks its own health and also

that of the other channel. When an error is detected, the afflicted channel either shuts itself

down or, in some circumstances, it is shut down by the other channel. Now it is provably

impossible for such an architecture always to make the correct diagnosis, so there will be

circumstances where the chosen diagnosis algorithm will fail, and the wrong channel will

be shut down. In order to calculate the overall reliability achieved, we therefore need to
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knowthefailureratesof theindividualprocessors(whichcanbelookedupin reference
works)andthatof thediagnosticalgorithm.Letuscallthecoverage(i.e.,reliability)of
thisalgorithmC. The only way to determine the value of C is by empirical tests. A

Markov model allows the sensitivity of overall system reliability on the parameter C to be

determined. Under plausible assumptions, it can be shown that C > 0.9995 will satisfy a

system reliability goal of about 2 x 10 -6 failures over a 10-hour mission (this example is

from Johnson and Butler [JB92], where the details can be found). Further analysis reveals

that 20,000 tests will be required to estimate the coverage of the diagnosis algorithm to the

required level of statistical accuracy. If fault-injections can be performed at the rate of one

per minute, then 333 hours (a little over 14 days) of continuous time on test will be required.

This is feasible, and so this attribute of the proposed architecture can indeed be validated.

Now consider a different system, with a reliability requirement of 1 - 10 -9 to be

achieved using processors with failure rates of 10 -5 per hour. This can be accomplished by

a nonreconfignrable 5-plex architecture, provided the fault-masking algorithm has a cov-

erage greater than 0.9999982. This time, analysis shows (the details are again in [JB92])

that over a million fault-injections will be required to validate satisfaction of this require-

ment. This amount of testing is infeasible (it is equivalent to 1.9 years on continuous test

at one fault-injection per minute). We therefore have no alternative but to abandon this

architecture in favor of one whose critical design parameters can be measured in feasible

time--unless we can prove analytically that the chosen fault masking algorithm has cov-

erage greater than 0.9999982. Now the usual approach to fault-tolerant design is Failure

Modes and Effects Analysis (FMEA), which depends on enumerating all failure modes and

designing a mechanism to counter each one. The problem here is not so much demonstrat-

ing the reliability of each countermeasure, but providing evidence (to the required level of

statistical significance) that all failure modes have been accounted for. For a sufficiently

simple system, it may be possible that such evidence could be provided analytically, but

with a system as complex as a 5-plex of computers (with their associated sensors, cross-

strapping, and voting) there is no alternative to experimental determination--and that will

require an infeasible time on test.

But there is an alternative: it is possible to prove that certain architectures and algo-

rithms can mask a single failure in a 5-plex, no matter what the mode offailure (these are

based on Byzantine-resilient algorithms [LSP82, PSLS0, Sch90]; they are proved correct

without making any assumptions about the behavior of failed components). Thus in this

case it is possible (indeed, necessary) to substitute mathematical analysis for (infeasible)

experimental quantification of Markov transition probabilities.

To summarize this discussion: all software failures are of the systematic variety--

there is nothing to go wrong but the processes of specification, design, and construction.

Nonetheless, software failure can be treated as a random process and can be quantified

probabilistically. However, validation of achieved failure rates by experimental quantifica-

tion is infeasible in the ultra-dependable region. (This also places constraints on the design

of fault-tolerant architectures, since system reliability models require accurately measured
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orcalculatedprobabilitiesofcoveragefortheredundancy-managementandfault-tolerance
software.)Therealizationthatexperimentalvalidationis infeasiblefor softwarein the
ultra-dependableregionmeansthatitsvalidationmustderivechieflyfromanalysisofthe
softwareandfromcontrolandevaluationof its developmentprocesses.Thus,thegoals
oftheverydisciplinedlife-cycleprocessesrequiredbyalmostallstandardsandguidelines
forsafety-criticalsoftwarearetominimizetheopportunitiesforintroductionoffaultsinto
adesign,andto maximizethelikelihoodandtimelinessof detectionandremovalof the
faultsthatdocreepin. Themeansfor achievingthesegoalsarestructureddevelopment
methods,extensivedocumentationtracingallrequirementsanddesigndecisions,andcare-
ful reviews,analyses,andtests.Themorecriticalapieceof software,themorestringent
will betheapplicationof thesemeansofcontrolandassurance.
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